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ABSTRACT

A "mixture" probability model which incorporates two psycho-

.rmetric models frOm separate parametric families is introduced and the

application of this model in selecting a preferred component model

is described. Example applications of the suggested procedure are

L

considered for the special casein which the Rasch latent trait model

and the Latent State Mastery model are compared as to their relative

preference when data .are generated from each of these moilels. 7

e."



del

~NT'

Introduction

'Within the cpalm of probabilistic modeling, researchers are

frequently interested in ascertai6ing how well investigated models

niaccount foranifest data. Two frequently used s,tatistics for

assessing the absolute'fit of prdbability models are the

-Pearson and theHikelihooeratio stitistics. These statistics are

defjnediespectively in equatiOns (1) and (2).
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(2),

r

='observed 'frequency for the ith response category,01

E. = expected frequency for the 1
th

response category, and

n
r
= number 'of response categories.

Both of these statistics are asymptotically distributed as chi-

square (given ni?.10-1) with:degrees of freedom/

df
r

= n - k 1
r (3)

where k is
S
the number of independent parameters defining the model in

question.

Note that the observed and expected frequencies on which these

;

statistics are based may correspond to either "total scores" or item
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"response patterns." The preferability oethese-two.classes of

1 lb° .
I

response categories will depend on suCh factors as number7of re-
,

1

spondents, N, number of items, m, and number of parameters, k, to

be estimatedr

In addition to assessing,the absolute fit of models to 04gt, re-

searchers ate frequently interested in comparing the fits provided by

_

-different models. When comparisons between palirs of models are of
i

I ,
. .

interest, two situations may arise: (1) the models have a subsuming

relation, or (2) the models have a non-subtufiiing relation.

A subsuming relation exists between two models wthen the parameters-

of one model (the reduced model) form a"subset of those contained in the

second more complex model (thesubsuming or full model). When models

have a subsuming relation, it is possible to assess relative fit of

the reduced model to thelfull model (i.e., to detergfne whether-the

reduaed model fits as well as the full model). This may be accomplished

by using the difference inthe likelihood ratio statistics defined in

(2) for the full (I) andthe reduced (II) models,

2 2 *e 2

XD XLR(II) XLR(I) (4)

The difference statistic, ikt) , is asymptotically dfstributed

as chi-square (given that the full model holds) with degrees of freedom

df
D

kI - k
II

(5)

where k
I
and k

II
are respectively tiie number of independent parameters

in models I and IL
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Two mOdels have'a non-subsuming relation when the defining

0-

parameters,in neither model form asubset, of those defining the other
A

model. A problem arises if a researcher is interested in comparing

two models that have al non-subsuming relation, since the difference
a,

statistic defined in (4) is not distributed as chi-square. Thus, al- '

ternative peocedures are-needed-for asleiSing the relative adequacy of
-

. two models with respect to fit.

The probfem of comparing non-subsuming models falls, within the

context uf discriminating between models from,separate families. A

theory of hypOthests testing for separate families has been developed

by Cox (1961, 1962) and extended b'y Atkinson (1970 ) whose general

approach we follow:

The purpose of this paper is to introduce a general "mixture" .

probability model which incorporates two non-subsuming probability

models and to present a strategy for assessing fit provided by each of

the component models.

The Mixture Model

(The general model, Mx, presented in this paper incorpoKates two

alternative non-subsuming models (I and II) as weighted components of

the full model. Under the Mixture model, the probability of the occurrence

.th
of the 3\ response categony is defined as

1- x. k
G
i

0

1-x
z e 0
n,

(6)
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Inthisequation,G.and Ø. .respectively represent probabilities for

the i
th response category under the non-subsuming models I and II.

A. represents a "mixture".parameter.which designates the relative

contribution which each component model makes to the probability, 'Vi.

Notice that whenXis set at zero or one, the full model reduces to

model I .or model II respeotively.

ew
Estimation and Fit of the Mixture Model

To,obtain maximum likelihood estimates of the parameters whia

define the component latent structure models, iterative methods such

as the Newton-Raphson procedure (see Bock and Lieberman, 1970) or the

iterative proportional, fitting method(see Clogg, 1977) are frequently

employed. Similarly, a conditional maximum likelihood estimate of X.

may also be obtained through the,use of iterative procedures (see Conte

and deBoor, 1972).

A test for,the absolute fit of the Mixture model, Mx, can be per-

of a likelihood ratio statistic, kok., as defined in

N`f
i*
d This statistic is distributed asymptotically as

formed by means

(2), where E =

chi-siquare with

that estimates

degrees of freidom equal to nr -

of the parameters defining 1/. are

Strategy for Assessing'Fit

k
I

- k
II

- 2 (given

independent).

In this section a itagewise strategy for selecting a preferred

model is presented. Under this strategy it is possible to reach any

one of the following conclusions related to model preference based on

fit:

7
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,

(a) model provides acceptable fit, and is preferred,

(b) model II provides acceptable fit, and'is'preferred,

(c) both models provide acceptable fit, but neither is preferred, or

1(d) both models provide unacceppble fit.

A detailed description of the stritegy for selecting a preferred

model follows, with the flow diagram in Figure 1 reflecting this strategy.

.

.

I. ,.Assess the absolute fit of the Mixture model, Mx, by means of the..5cR

, .

statistic in equation (2).

A. If absolute fit is obtainedi go to II.

B. If absolute,fit is not obtained, STOP. Conclude that neither

Model I nor Model II (separately or combined) are acceptable

for describing the data.

II. .(From I.A) Assess the relative fit of MoIdel I and Model II to the

'Mixture model by means of the difference chi-square, .A.D, as defined

in'(4).

A. If both Model I,and Model II proVide acceptable ft, go to AI.

B. If only Model I provides acceptable relative fit, go to IV.

C. If only Model I provides acceptable'refative fit, go to V.

D. Ifineither Model I°nor Mocifil II prov,ide acceptable relative fit,

STOP. Conclude that neither Model I nor Model II are adequate

to accounI for the data.

III. (From II.A) Assess Model I and Model'II with respect to their

absolute fits with-equation (2)-.

A. If only Model II provides acceptable fit, STOP. Select

Model II.

8
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B. If only-MOW I provides acceptable'fit, STOP. 5elect Model I:

C. It both Model I and Model II prOvide acceptable fit, STOP..

, -

Conclude that both Model I land Model II are acceptable models

but neither is "preferred" over the other model.

CI: If neither model provides acceptable,absolUte-fit,, STOP.

Conclude that-neither model is acceptable.

IV. (From II.B) Assess the absolute fit of Model II with equation (2).

A. If absolute fit is obtained, STOP. Select Model II.

B. If absolute fit is not obtained, ST9P. Conclude that neither..
I

moddl is acceptable.

V. (From II.C) !Msess the absolute fit of Model I with equation (2).,

A. If absolute fit is obthined, STOP. Select Model I.

B. If absolute fit it' not obtained, STOP. Concljde that neither

model is acceptable.

Example Applications

In the area of mastery assessMent two classes of latent structure

models have been proposed. These have been called Continuum models and

State models (see Meskauskas, 1976). FOr Continuum models,,, trait

- acquisition is,assumed to be gradual and mhstery is vieWed as an interval

on a continuum while for State models, trait acquisition is conceived as\

an "all-or-none" process and'mastery is viewed as the presence of trait

acquisition. Two models which fali respectthly within the Continuum

and State model clastes (and which clo not have a subsuming relation) are

theiRasch model (Wright and Stone, 1979) and th Latent State Mastery
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(LSM) model (Macready and Dayton; 1977). This section of the paper

is.devoted to the application of the propOsed strategy with simulated

..data, for se1ectio9 between the Rasch and'LSM models.
4

For both the Rasch and LSM.liodecls, the probability of the

4 occurrende, oT the ith response 'pattern may be'ciesignated as the product .

, of item t.esponse probabilities (assuming.local.indepencence).

- m h . 1:11

. P (u.:) iig .111. P gi (1-P ) gi
tril g

where ,u. = the'i, response pattern

m = the riumber of,dichotomously sCofidiitems, and

1 when a torrect response is encoUntered

hgi=
for the gth itemiwithin the i141 response pattern.

0 otherwise,

For the .Risch model, the prdbability'of a correct response to.item

g over all persons is

exp {.41 (. b ).]. 1 7 j g

g

I

x.ic.the latent ability o# the jth'examinee,
'J

b = difficulty of the g
th

itemv ahd

a common iscrimination factor for all items.

(7)

where

Correspondingly, #or the LSM model, the probability, Pg, is

defined as

Pg X (Pg.tti) ( ) (Pgy), 6).

12

(9).
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P = the conditional probability that a master (M) answers
g.M

P = the conditional probability that a non-master (M)

answers item g correctly, and '

= the latent proportion of,masters (thus, 1 -L is

the latent proportion of 'non-masters).

In equation (6), P(u) is represented as 41-for.the Rasch model and

Oi for the LSM model.

Data Generation

TwOsets of simulated data wer.e considered in this paper. The

r-

A

first set of data was based onthe Rasch model for a sample of N = 100

simulated subjects responding'to m = 5 items. The item difficulties

--used-inOheratipn were uniformly distributed (-.9, -.45, 0.0, .45, .9)

and the discrithination factor (i) was

trait xj, was randomly generated from

of 0.0-and standard deviation of 1.0.

set equal to .85. The latent

a normal population with a mean

The second set of simulated data was based on'the LSM model, here

also with a sample of N=100 iimulated subjects responding to m = 5 items.

Under this model, the five conditional probabilities for positive item

responses from non-masters, Pg.g, were set at .99, .98, .97, .96, and .95.

For each set of simulated data, maximum likelihood estimates of the

parameters defining each podel were independently estimated through the

use of separate programs employing Newton-Raphson algorithms (see Wright,

Mead, and Bell, 1979; and Dayton and Macready, 1976). Conditional upon
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these estimates, a maximum likelihood estimate of ). was obtained using

the method of bisection (Conte and deBoor, 1972). In addition, models

were jud§ed as providing-acceptable absolute (or relative) fit if---1

(P( t2)0,5.

The results 'related to the data generated from the Rasch model are

presented.in Table 1.'

jable 1

Results for tests of fit based on data
generated from the Rasch model

Assessed Condition df p-value

Absolute fit of. Mx 22.42 ' 14 .930

Relative fit of Rasch, 7.17 12 .154

Relative fit of LSM 9.34 6 .845

Absolute fit of Rasch 29.59 26 .715

Absolute fit of.LSM 31.76 20 .954

Following the detailed strategy for selecting a preferred model, the

absolute fit of the Mixture model, M
'

was first assessed (at Stage I).
x

Since the observed for the Mixture model suggested adequate fit,

the relative fits forr both-the Rasch and LSM models to the mixture-model .

were considered (at Stage II). Becauie each of these models provided

acceptable relative fjt to the Mixture model, they were then aSsessed pith

respect to their absolute fit (at Stagb III). Only the X2:1.tfor the

Rasch model failed to eXceed the .05 critical value. Hence, the Rasch

modelWas 'selected as the preferred model.

Correspondito results for the data set that was generated-from the

LSM model are presented in Table 2.

1, 14
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Table'2

Results-for_tests,_of.fit_b_a_sed on data

generated from the LSM=model!

Assessed Condition ()(2: df p-value

Absolute fit Of
*x

Relative fit of Rasch

Relative fit of LSM

Absol,uie fit of Rasch

Absolute fit of LSM

e 17.19

22.03

1.41.

39.22

18.61

14

12

6

26

20

. .754

.963
.

.035

.954

.453

As in the previous example, the Mixture model pfbvided acceptable

absolute fit (at 8.tage I). Thus, (at Stage,II) both the Rasch and LSM

models were assessed with respect to their relative fits to the Mixture'

model. Here, only the LSM modil provided acceptable relative fit. For

this reason only the LSM aodel was 'assessed with respect to its absolute

fit (et Stage IV) which was obtained. ConsequentlY, the LSM model was

,selected as the preferred model:

_____In_each of the ex441.g4-considered_tt-may-be-seen that the decision

strategy led to the seleciion of the generating model.

15
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